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It is shown that a vertically vibrated binary granular gas mixture of light and heavy
particles can segregate (in the presence of gravity) in such a way that the bottom
and top layers are composed mostly of light particles, even if all other parameters
(including size) are the same for both species. The corresponding concentration
profile possesses certain universal properties. It is also shown that such mixtures can
segregate when the only difference between the species is the value of the coefficient of
restitution. These findings follow from a set of hydrodynamic equations for granular
gas mixtures which we derived from the pertinent Boltzmann equation. The above
results comprise the second part of this article, the first part of which is devoted to a
brief and somewhat biased review of the main physical properties of granular gases.
This includes their (generic) tendency to coagulate into clusters and other micro-
and macrostructures. A fundamental property of granular materials in general, and
granular gases in particular, is the lack of scale separation; an explanation and some
consequences are presented. The answer to the basic question of whether the dynamics
of granular gases lends itself to description by (appropriate) hydrodynamic equations
seems to be positive, though some restrictions apply.

1. Introduction
The fact that collections of macroscopic grains, such as sand, salt, cereals or coal,

can flow is no surprise to anyone. Whether these flows can be described by hydro-
dynamic equations is not a priori clear (Tan & Goldhirsch 1998; Kadanoff 1999;
Goldhirsch 2000).

Collections of macroscopic grains, also known as granular matter, are commonplace
in nature and industry. The handling, conveying and storage of grains (and the fre-
quent malfunction of grain handling facilities, or even potentially catastrophic events
such as the collapse of a silo) are of great industrial importance. Snow avalanches,
rock and land slides, and sand dune dynamics, are examples of naturally occurring
granular flows. The planetary rings are mostly composed of ice particles.

In addition to the practical and environmental importance of granular materials,
there are excellent scientific reasons to study them. On one hand, fluidized granular
materials exhibit almost every known hydrodynamic flow (and instability), such as
Rayleigh–Bénard convection, Taylor–Couette flows, Faraday crispations, shear flows
and more. On the other hand they possess a rich rheology which does not parallel
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‘regular’ hydrodynamics. For instance, vertically vibrated shallow layers of grains
exhibit ‘oscillons’ (Umbanhowar, Melo & Swinney 1996) which are stable geyser-like
excitations. Granular fluids often posses non-trivial microstructures, which affect their
other properties (Goldhirsch 2003). The normal stress in these fluids is often anisotro-
pic, much like in other non-Newtonian materials (but for a somewhat different reason,
see more below). Their unique properties led some to consider them to constitute ‘a
new state of matter’. To the theoretician granular materials pose significant challenges,
many of which pertain to the fact that they lack scale separation (Tan & Goldhirsch
1998); in a way their hydrodynamic description can be considered to be an extreme
case of the application of hydrodynamics (Goldhirsch 2000). Surprisingly, the field of
granular flows became part of the discipline of fluid mechanics only about 25 years
ago.

Often granular materials on the Earth are embedded in an ambient fluid. In this
case the material is still considered to be granular if the stress due to the grains by far
exceeds that due to the fluid (the ratio of the two is known as the Bagnold number),
so that the effects of the fluid can be ignored; otherwise the system is to be considered
a suspension.

Granular materials can be fluidized by means of vibration, shaking, shear, gravity
(as in a chute) and other techniques (cf. the review Goldhirsch 2003). When strongly
forced a granular system can become sufficiently fluidized that the grain interactions
are mostly nearly instantaneous binary collisions; this phase is referred to as a
granular gas.

Naturally occurring grains are usually non-spherical and polydisperse. While
flowing or otherwise forced they are prone to attrition or breakup and their properties
may therefore be time dependent. Furthermore, real grains experience frictional
interactions (see e.g. Goldhirsch, Noskowicz & Bar-Lev 2005, and references therein).
These complications notwithstanding, the theoreticians’ paradigm for describing
granular gases is one of a collection of smooth homogeneous hard spherical grains,
whose collisions are characterized by a fixed coefficient of normal restitution. This
model, in spite of its simplicity, brings out some of the major properties of granular
gases (perhaps paralleling elastic spheres as models of molecular gases). Extensions
include the use of (physically realistic) velocity-dependent coefficients of restitution,
frictional restitution, and to a lesser extent non-sphericity (cf. the review Goldhirsch
2003). In the present article we employ the above simple model to describe the
dynamics of monodisperse and bidisperse granular gases.

The structure of this paper is as follows. Section 2 is devoted to an introduction
to the properties of granular gases. Section 3 provides an introduction to binary
mixtures of granular gases. Section 4 is devoted to a description of the kinetics and
hydrodynamics of these mixtures. Section 5 presents two novel results pertaining to
segregation in binary granular gas mixtures. Finally, § 6 provides a brief summary and
outlook.

2. Some basic properties of granular gases
The theoretical description of granular gases is largely (but not entirely) based on

analogies with molecular gases, where the grains are equivalents of the molecules.
There are two major differences between (classical) molecular and granular gases. As

a practical matter, since typical grains are of macroscopic dimensions, the number of
grains in an industrial container or experimental system is far smaller than Avogadro’s
number, rendering fluctuations of greater relative magnitude than in molecular gases.
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There is an experimental advantage to the size of the grains since they are usually
visible to the naked eye and fast photography can be employed (in particular in
two-dimensional cases) to follow their dynamics. In such systems one can ‘see’ the
interior of shocks (Rericha et al. 2002), whose widths may be e.g. of the order of
centimetres. This fortunate state of affairs may cause (at times) some confusion, as
hydrodynamic descriptions are often ‘required’ to describe the dynamics on the scale
of a few grains; surprisingly, such applications seem to succeed in some cases, e.g.
Forterre & Pouliquen (2002).

The fundamental difference between molecular and granular gases is that in the
latter the collisions are inelastic. This fact alone is the source of many properties
which are specific to granular gases (see below). The most obvious consequence of
inelasticity is that granular gases ‘do not conserve energy’ (it is lost to internal degrees
of freedom of the grains) in collisions, hence a steady state of a granular gas can
only be sustained by an external energy supply. Therefore granular gases are always
in non-equilibrium states.

At this stage it is convenient to define the granular temperature, T , as the (ensemble)
average of the square of the fluctuating particle velocities. This temperature is
unrelated to the internal (thermodynamic) temperature of the grains. It is however
a measure of velocity fluctuations, much like the thermodynamic temperature for
molecular gases. Notice that the dimension of the granular temperature is that of
squared velocity.

Granular gases possess a tendency to coagulate into clusters even for ‘initially
prepared’ homogeneous mass distributions (Goldhirsch 1991; Hopkins & Louge 1991;
Goldhirsch & Zanetti 1993). This property can be understood on the basis of the
following simple considerations, as well as detailed calculations (Goldhirsch & Zanetti
1993). A granular gas, like any other many-body system, experiences fluctuations, in
particular of the density. Since in relatively dense domains the rate of collisions
(proportional to the square of the number density) is higher than in dilute domains,
the kinetic energy in dense domains decays at a higher rate than in dilute ones, owing
to inelasticity. The ensuing (grain) pressure difference leads grains from dilute into
dense domains, thereby further increasing the density of the latter, and giving rise to
dense clusters. The clusters may further coagulate into larger clusters by coarsening
(Goldhirsch 2003 and references therein) and they may collide thereby destroying
each other (Tan & Goldhirsch 1997). Other structures or microstructures, such as
plugs in sheared flows, can be attributed to similar mechanisms. Sufficiently small
granular systems do not exhibit clustering, but even then there are linear instabilities
that render them inhomogeneous (Goldhirsch & Zanetti 1993; Deltour & Barrat
1997; Brey, Ruiz-Monterro & Cubero 1999). Clustering is one of the reasons for
multistability in granular gases, since they can be rather stable once formed.

Perhaps the most important property of granular gases, one which strongly distin-
guishes them from molecular gases, is the lack of scale separation (Tan & Goldhirsch
1998). Arguments that help demonstrate this property of granular gases in a simple
case are presented next. Consider a simple shear flow of a monodisperse collection
of spheres, with a fixed coefficient of normal restitution, ẽ (see equation (2.1)). The
velocity field is given by V = γy x̂, where γ is the shear rate, x is the streamwise
coordinate, and y a spanwise coordinate. In the absence of gravity, γ −1 provides
just a time scale. Recalling that the granular temperature, T , has dimensions of
squared velocity, it follows from dimensional analysis (also, from kinetic calculations
or, by a direct comparison of the ‘heating term’ (∝γ 2�

√
T ) in the equation of motion

for the temperature field (see more below) to the energy sink term (∝(ε/�)T 3/2)
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in that equation) that T ∝ γ 2�2, where � is the mean free path (the only relevant
microscopic length scale). Define the degree of inelasticity, ε, by ε ≡ 1 − ẽ2. Clearly,
T should be larger, for a given value of γ , the smaller ε. Furthermore, when ε =0,
the shear work raises T indefinitely (the granular ‘heat’ cannot escape through the
boundaries of the system). Therefore T → ∞ as ε → 0. It is plausible to assume
(and this is corroborated by quantitative studies, cf. Sela & Goldhirsch (1998) and
references therein; see also the above comparison of the heating and sink terms)
that T ∝ 1/ε, hence: T = C(γ 2�2/ε). The value of C is about 1 in two dimensions
and 3 in three dimensions. It follows that γ �/

√
T =

√
ε/

√
C, i.e. the change of speed

over a mean free path (in the spanwise direction) is comparable to the thermal
speed (unless ε is very small), hence the shear rate can be considered ‘large’, and
the flow is typically supersonic. Indeed, shocks are a frequent occurrence in granular
gases. Consider next the mean free time, τ , i.e. the ratio of the mean free path
and the thermal speed: τ ≡ �/

√
T . Clearly, in simple shear flows, τ and γ −1 are the

microscopic and macroscopic time scales respectively, characterizing the system. Since
τ/γ −1 = τγ = �γ /

√
T =

√
ε/

√
C, there is no good temporal scale separation except

in near-elastic cases. This fact may be used to cast some doubt on the relevance
of granular hydrodynamic equations or methods to obtain them, which are based
on the assumption of ‘fast local equilibration’ on microscopic scales, constrained by
the values of the ‘slow’ or hydrodynamic fields. However, it does not preclude the
existence of hydrodynamic descriptions of nearly elastic granular gases, where scale
separation is restored. An analysis similar to the above for e.g. vertically vibrated
granular systems (in the presence of gravity) reveals weak scale separation as well,
but as it is less straightforward it will not be presented here.

An interesting consequence of the lack of scale separation is the anisotropy of
the normal stress in granular gases. Consider again the simple shear flow. Since the
gradients in this system are not ‘small’ one expects sizeable Burnett contributions to
the constitutive relations. Consider the ratio of the xx component of the stress, τxx ,
and the pressure, p. As this is a (γ -dependent) dimensionless entity, which must be
even in γ by symmetry, it follows that to O(γ 2):

τxx

p
=

1

3

(
1 + cxx

γ 2�2

T

)
=

1

3

(
1 +

cxxε

C

)
,

in three dimensions. A similar result holds for τyy . The dimensionless constants, cxx

and cyy , need not be equal; indeed they can be shown (Sela & Goldhirsch 1998)
to be O(1) and different from each other, i.e. one expects significant normal stress
differences. Note that γ 2�2/T ≈ 10−18 for air at STP conditions and γ = 0.1 s−1. This
shows yet another facet of granular gases: they may ‘amplify’ some negligible effects
(in molecular gases) to the level of O(1) phenomena.

2.1. A brief review of the kinetic theory of granular gases

It is easy to modify the classical Boltzmann equation to account for inelastic collisions
(Goldshtein & Shapiro 1995). The assumption of molecular chaos, even for low
densities, is not as well justified for granular as for molecular gases, since the normal
component of the relative velocity is reduced by a factor ẽ upon collision, thereby
rendering the particle velocities more correlated. Indeed, such correlations have been
observed in molecular dynamic (MD) simulations, cf. e.g. Soto, Piasecki & Mareschal
2001. As the coefficient of restitution approaches unity, these correlations decrease.
This implies that the Boltzmann equation for granular gases applies (at best) to
near-elastic collisions. Since the Chapman–Enskog expansion is valid only when there
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is scale separation, it follows that both granular kinetics and hydrodynamics are
restricted, in principle, to near-elastic collisions.

Consider a monodisperse collection of homogeneous hard spheres, of unit mass,
and diameter d , whose collisions are characterized by a constant coefficient of normal
restitution, ẽ. The binary collision between spheres i and j is defined by

vi = v′
i − 1 + ẽ

2
(k̂ · v′

ij )k̂, (2.1)

where (v′
i , v

′
j ) are the precollisional velocities, (vi , vj ) are the corresponding postcolli-

sional velocities, v′
ij ≡ v′

i −v′
j , and k̂ is a unit vector pointing from the centre of sphere

i to that of sphere j at the moment of contact. Denote by f (v, r, t) the single-particle
distribution function, i.e. the number density of particles having velocity v at point r
and time t . The Boltzmann equation, corresponding to the above model, is (in three
dimensions):

∂f (v1, r, t)
∂t

+ v1 · ∇f (v1, r, t)

= d2

∫
k̂ · v12>0

dv2 dk̂ (k̂ · v12)

(
1

ẽ2
f (v′

1, r, t)f (v′
2, r, t) − f (v1, r, t)f (v2, r, t)

)
, (2.2)

where ∇ is the gradient operator. In addition to the explicit dependence of (2.2) on

ẽ, it also implicitly depends on it through relation (2.1). The condition k̂ · v12 > 0
represents the fact that only particles that approach each other can collide.

The Boltzmann equation is a nonlinear integrodifferential equation, and there is no
known way to solve it exactly. Among the methods employed to obtain constitutive
relations from the (granular) Boltzmann equation are phenomenological methods
based on an ansatz for the form of the distribution function and the use of the Enskog
equations for the moments of the distribution (cited in Goldhirsch 2003), the Grad
expansion method and its generalizations (Jenkins & Richman 1985; Ramirez et al.
2000; Bisi, Spiga & Toscani 2004) and the Chapman–Enskog expansion (Chapman &
Cowling 1970). The latter is the standard method used for the study of molecular gases,
and it is based on an assumed existence of scale separation between the microscopic
and macroscopic dynamics. The basic step in this expansion is to identify a set of ‘slow’
or hydrodynamic fields (usually the densities of the collisionally conserved entities)
and assume that all other variables, in particular the velocity distribution function,
are enslaved to the hydrodynamic fields. Technically, one replaces the space–time
dependence of the distribution function, f , by a dependence on the (time-dependent)
hydrodynamic fields. The next step is to assume that the fields do not change much
over the scale of a mean free path (in space); this justifies a gradient expansion in
the fields (formally, an expansion in powers of the Knudsen number, which is the
ratio of the mean free path to the macroscopic scale of change of the fields). In
practice, one can use a set of fields which are functionals of the slow fields, such as
the velocity field. In elastic monodisperse systems the set of slow or hydrodynamic
fields consists of the mass density, ρ(r, t) (or number density, n(r, t)), the momentum
density p(r, t) (hence, one can use the velocity field, V (r, t) ≡ p(r, t)/ρ(r, t) instead),
and the energy density (for rigid objects, this is equivalent to the kinetic energy
density; by subtracting the macroscopic kinetic energy density, 1

2
ρV 2, from the ‘full’

energy density one obtains the fluctuating energy density, or 1
2
ρT ).

In the realm of granular gases, n and p are ‘slow’, but energy is not conserved
(which is perhaps one of the reasons the granular temperature was not used as a
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relevant field in early studies of granular dynamics, see Hutter & Rajagopal (1994)
and references therein). However, when the degree of inelasticity is sufficiently small,
it is justified to include it (or the granular temperature, T (r, t)) as a hydrodynamic
field, as it is ‘nearly slow’ (note that the granular temperature is eliminated from the
equations of motion in some cases (Kumaran 2004; Wakou, Brito & Ernst 2002) as it
is considered to relax to a slowly evolving ‘steady’ value when the spatial and temporal
scales are sufficiently large). Furthermore, it is an important characterization of the
state of a granular gas. Yet another argument for including the granular temperature
in the set of the hydrodynamic fields is presented below. The aforementioned fields
are moments of the distribution function, f :

n(r, t) ≡
∫

dvf (v, r, t), V (r, t) ≡ 1

n(r, t)

∫
dvvf (v, r, t),

and

T (r, t) ≡ 1

n(r, t)

∫
dv(v − V )2f (v, r, t),

respectively. It is a priori unclear whether these fields are sufficient for the achievement
of a proper closure, since one cannot naively extrapolate from the case of molecular
gases, but this turns out to be the case. The form of the (continuum mechanics)
equations satisfied by the hydrodynamic fields can be obtained by multiplying the
Boltzmann equation, (2.2), by 1, v1 and v2

1 respectively, and integrating over v1.
A standard procedure (Chapman & Cowling 1970), which exploits the symmetry
properties of the collision integral on the right-hand side of the Boltzmann equation,
yields (Sela & Goldhirsch 1998)

Dn

Dt
+ n

∂Vi

∂ri

= 0, (2.3)

n
DVi

Dt
+

∂Pij

∂rj

= 0, (2.4)

n
DT

Dt
+ 2

∂Vi

∂rj

Pij + 2
∂Qj

∂rj

= −nΓ, (2.5)

where D/Dt denotes the material derivative, and the summation convention is applied.
Denote by u ≡ v − V the fluctuating (or peculiar) velocity. In (2.3)–(2.5) Pij ≡ n〈uiuj 〉
denotes the stress tensor, and Qj ≡ 1

2
n〈u2uj 〉 is the heat flux vector, where 〈〉 denotes

an average with respect to f . The term Γ , which accounts for the energy loss in the
collisions, is given by:

Γ =
π (1 − e2) d2

8n

∫
dv1 dv2v

3
12f (v1)f (v2).

Equations (2.3)–(2.5) are exact consequences of the Boltzmann equation. They also
comprise the equations of continuum mechanics, and thus their validity is more
general than that of the Boltzmann equation. Notice that the only new term in the
form of the continuum mechanics equations for granular fluids is the energy sink, Γ ,
in (2.5). This term is crucial for the correct description of granular hydrodynamics.
Inelasticity also affects the detailed constitutive relations. When the latter are derived
from the Boltzmann equation, their validity is limited to low volume fractions; the
use of the Enskog–Boltzmann equation may yield constitutive relations which are
valid up to moderate volume fractions, cf. e.g. Garzo & Dufty (1999a).
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The zeroth order of the classical Chapman–Enskog perturbation theory (for
elastically colliding constituents) corresponds to zero Knudsen number, K (no
gradients), i.e. it is the state of (local) equilibrium, which is itself a solution of
the Boltzmann equation. In the absence of an unforced, gradient-free granular gas
steady state, a different perturbative scheme needs to be devised. One way (Brey et al.
1998) is to note the existence of a homogeneous solution of the Boltzmann equation,
whose granular temperature decays with time (the ‘homogeneous cooling state’ or
HCS (Goldhirsch, Noskowicz & Bar-Lev 2003)) and expand around the local HCS
in powers of the Knudsen number. Another method is based on the observation
that in the (double) elastic and unforced limit the equation possesses an equilibrium
solution. Therefore, a double expansion in both the degree of inelasticity, ε, and K

can be carried out. The former method does not formally restrict the value of ε to be
small. The latter method is easier to implement, and it can be employed to produce
any desired accuracy for the transport coefficients, though (in practice) only to low
orders in ε. This restriction may not be too severe, since, as explained above, the
Chapman–Enskog expansion cannot be valid for too small coefficients of restitution.
For details on the constitutive relations obtained by using the second method the
reader is referred to Sela & Goldhirsch (1998). Here we quote only the expression for
the heat flux:

Q = −κ̃n�
√

T ∇T − λ̃�
√

T 3∇n + Burnett terms,

where κ̃ ≈ 0.4101+0.1072ε +O(ε2) and λ̃≈ 0.2110ε +O(ε2). Notice that the heat flux
includes a ‘non-Fourier’ term at order Kε. This term (as a low-density contribution)
was first discovered in Sela & Goldhirsch (1998), rediscovered shortly thereafter in
Brey et al. (1998), and further rediscovered on the basis of numerical simulations
in Soto, Mareschal & Risso (1999). It is of importance in applications, e.g. in the
determination of the temperature and density profiles of a vertically vibrated granular
system (Brey, Ruiz-Montero & Moreno 2001).

Returning to the issue of choosing the slow fields for which hydrodynamic equations
need to be derived, it should be evident on the basis of the above considerations that
these fields are not necessarily the exactly conserved fields, but rather those fields that
are conserved in the limit which defines the zeroth-order solution (this is compatible
with the centre-manifold theorem, but we shall not dwell on this point here); in our
case, when ε → 0, the standard hydrodynamic fields become conserved.

3. Binary granular mixtures: a brief introduction
Granular mixtures are known to exhibit a host of effects that are specific to them,

as well as other effects that pertain to mixtures in general. For instance, mass and
size segregation are quite common, see e.g. the review Kudrolli (2004), the latter being
the granular equivalent of the Soret effect, when driven by a temperature gradient.
Typically, the tendency of granular mixtures to segregate (Ottino & Khakhar 2000;
Shinbrot & Muzzio 2000; Kudrolli 2004) seems to be stronger than that of the
corresponding molecular mixtures. For instance, granular mixtures may segregate on
the basis of different frictional properties of the constituents (Kondic et al. 2003).
Another interesting mechanism for segregation is ratcheting (Rapaport 2001). An
intriguing phenomenon is the ‘Brazil nut’ effect, whereby a relatively large particle
in a vibrated granular system tends to climb to the ‘top’ of the system, against
gravity (Rosato et al. 1987). Several explanations of this phenomenon have been
proposed, (cf. e.g. Rosato et al. 1987; Knight et al. 1996; Shinbrot & Muzzio 2000;
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Trujillo, Alam & Herrmann 2003; Bose, Nott & Kumaran 2004; Mobius et al. 2005),
some of which attribute the effect to the presence of convection (Knight et al. 1996).

While all of the proposed mechanisms may be relevant, it is interesting to note
that the granular temperature of a vertically vibrated granular system decays as
a function of height (distance from the source of energy, i.e. the floor) owing to
the inelasticity of the particle interactions; this temperature gradient can induce a
thermophoretic effect (Goldhirsch & Ronis 1983a, b), whereby a large particle moves
down the temperature gradient. This possibility suggests that (at least) one of the
mechanisms underlying the Brazil nut effect could be an indirect result of inelasticity
in the sense that it is a thermophoretic phenomenon driven by the inelasticity-
induced temperature gradient (convection in vertically vibrated granular systems is
yet another example of an indirect consequence of inelasticity; it is also strongly
affected by other factors, such as the nature of the sidewalls). Below we study a direct
consequence of inelasticity, namely that a granular mixture, in which the constituents
differ only by their respective coefficients of restitution, can segregate in the presence
of a temperature gradient. Numerical and analytical studies of the dynamics of free
(‘cooling’) granular mixtures, (e.g. Cattuto & Marconi 2004; Garzo & Dufty 1999b)
suggest the existence of instabilities that may lead to segregation; however, (see
below) a segregated state may be the basic solution of the equations describing a
forced granular mixture. Many other interesting properties of granular mixtures, such
as the patterns they exhibit (cf. e.g. Shinbrot & Muzzio 2000), possible segregation
phase transitions (Reis & Mullin 2002), and segregation in sheared and other flows,
are not described here.

The constituents of a granular mixture do not share the same (granular) temperature
(Dahl et al. 2002; Feitosa & Menon 2002; Wildman & Parker 2002; Alam & Luding
2003; Paolotti et al. 2003; Wang, Jin & Ma 2003; Alam & Luding 2005). This much
discussed property is not surprising since equipartition is not expected to hold in
non-equilibrium states.

While models for mixtures of granular gases have been proposed, there are very
few basic derivations of the pertinent constitutive relations. The first basic study of
this problem seems to be Jenkins & Mancini (1989). These authors employed exact
relations (Enskog equations) for the time evolution of single-particle properties. A
closure was obtained by assuming a form of the velocity distribution function. A later
study of granular thermal diffusion using a revised Enskog theory can be found in
Hsiau & Hunt (1996). The resulting constitutive relations were essentially the same
as for elastic systems, see Kincaid, Cohen & Lopez de Haro (1987) and references
therein, except for an energy sink term in the equation for the granular temperature.
Later, Arnarson & Willits (1998) improved upon these results, and used them to
study segregation in a binary mixture of spheres subject to a temperature gradient.
Further extensions are presented in Alam et al. (2002) and Jenkins & Yoon (2002).
A smplified theory is proposed in Arnarson & Jenkins (2004). A critical study of
the virtues and disadvantages of a series of models for the dynamics of granular
binary mixtures alongside a comparison to results of molecular dynamic simulations
of shear flows (cf. e.g. Alam & Luding 2005; Clelland & Hrenya 2002) can be found
in (Galvin, Dahl & Hrenya 2004). In a relatively recent study (Garzo & Dufty 2002)
the Boltzmann equation for granular mixtures was perturbatively solved to obtain
constitutive relations, using the local HCS as a zeroth order. As the algebra involved
in these derivations is complex, the constitutive relations are not explicitly presented in
their paper. Our own work, which is nominally limited to near-elastic granular gases,
involves some complex algebra as well, but by using a computer-aided technique we
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have been able to obtain accurate analytic expressions for the constitutive relations,
to linear order in the degress of inelasticity. In the near-elastic case our results agree
with those of Garzo & Dufty.

The outline of the derivation of constitutive relations for granular mixtures
presented below is based on the above generalization of the Chapman–Enskog
expansion, which involves an expansion around local equilibrium. Therefore, the
hydrodynamic fields are the densities of the entities that are conserved in the zeroth
order of perturbation theory, i.e. the same as in an elastically interacting mixture.

4. Kinetics and hydrodynamics of granular gas mixtures
Consider a mixture of smooth hard spheres, composed of species A and B , of masses

mA and mB , and diameters σA and σB , respectively. The coefficient of normal restitution
(assumed to be fixed) for a collision of a particle of species α ∈ {A, B} with a particle
of species β ∈ {A, B} is denoted by eαβ (hence, eαβ ∈ {eAA, eBB, eAB}). Tangential
(frictional) restitution is not considered here. The transformation of velocities due to
a collision of a sphere of species α with a sphere of species β is given by

v1 = v′
1 − (1 + eαβ)M

β,α(v′
12 · k̂)k̂, (4.1)

v2 = v′
2 + (1 + eαβ)M

α,β(v′
12 · k̂)k̂, (4.2)

where {v′
1, v

′
2} denote the precollisional velocities of the spheres (the index ‘1’ refers

here to species α), and {v1, v2} are the corresponding postcollisional velocities;

k̂ is a unit vector pointing from the centre of sphere α to that of sphere β ,
Mα,β ≡ mα/(mα + mβ) and v12 ≡ v1 − v2, a similar definition holding for the primed

(precollisional) velocities. Obvious kinematic constraints require that v′
12 · k̂ � 0.

Define the degrees of inelasticity, corresponding to the coefficients of restitution, as
εαβ ≡ 1 − e2

αβ .
The kinetic description of a binary granular gas mixture involves two Boltzmann

equations, one for each species. Their derivation is similar to that of (2.2), and will
not be presented here; see also Garzo & Dufty (2002). The result is

∂fα

∂t
+ v1 · ∇fα + g · ∇v1

fα = Bαα(fα, fα, eαα) + Bαβ (β �=α)(fα, fβ, eαβ), (4.3)

where g denotes the gravitational acceleration, ∇v1
is a gradient with respect to the

vector v1, fα (v) is the single-particle (or singlet) distribution function for particles
of species α, and Bαβ(fα, fβ, eαβ) is the α-β species Boltzmann collision operator,
defined by:

Bαβ(fα, fβ, eαβ) = σ 2
αβ

∫∫
v12 · k>0

[
fα(v

′
1)fβ(v

′
2)

e2
αβ

− fα(v1)fβ(v2)

]
(v12 · k̂) dv2 dk̂, (4.4)

where σαβ ≡ (σα + σβ)/2. Here v1 and v′
1 pertain to species α, and v2 and v′

2 pertain to
β . Notice that Bαβ(fα, fβ, eαβ) depends on the coefficients of normal restitution both
explicitly, as shown in (4.4), and implicitly through the collision law.

Following § 3 the hydrodynamic fields in the present case comprise the two number
densities nA and nB (or the mass densities ρA = nAmA and ρB = nBmB), the mixture’s
velocity field, V , and the temperature field, T , defined (differently from the mono-
disperse case) as twice the mean fluctuating kinetic energy of a fluid particle. The
continuum equations of motion follow from the pertinent Boltzmann equation directly
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(using the standard procedure of computing velocity moments of the equation). Their
validity is general since they are based on the underlying conservation laws.

The equation of motion for the number density, nα , with α ∈ {A, B}, is

Dnα

Dt
= −∇ · Jα − nα∇ · V (4.5)

where D/Dt is the material derivative and Jα ≡ nα(V α − V ) is the particle flux
density of species α. As V α , the velocity field of species α (or the flux Jα), is not
a hydrodynamic field, it must be given by an appropriate constitutive relation. The
velocity field obeys (as expected)

ρ
DVi

Dt
= −∂Pij

∂xj

+ ρg,

where the summation convention is used, and Pij is the stress tensor. The granular
temperature field obeys

n
DT

Dt
= T ∇ · J − ∇ · Q − 2Pij

∂Vi

∂xj

− Γ,

where J ≡ JA + JB is the total particle flux, and Q is the heat flux.
The form of the constitutive relations can be easily determined from tensorial

(and symmetry) considerations, the result being (to linear order in the gradients, or
Navier–Stokes order)

Pij = pδij − 2µDij − δijη∇ · V , where Dij ≡ 1

2

(
∂Vi

∂xj

+
∂Vj

∂xi

− 2

3
δij ∇ · V

)
is the traceless rate of strain tensor, µ is the shear viscosity, η is the bulk viscosity
(which vanishes in the dilute limit) and p is the pressure. The diffusion flux is given
by

Jα = −mβ(β �=α)n

ρ
D∇

(
nα

n

)
− ρ

p
Dp∇p − ρ

p
DT ∇T , (4.6)

where D and DT and Dp are the diffusion, thermal diffusion and barodiffusion
coefficients respectively, and ρ ≡ ρA +ρB is the mass density. The heat flux is given by

Q = −T 2Df ∇
(

nA

n

)
− λp∇p − λ∇T , (4.7)

where Df is the Dufour coefficient, λ is the thermal conductivity and λp is the
barothermal coefficient. The energy sink term will be discussed further below. In the
dilute limit the equation of state is the same as that for an ideal gas: p = 1

3
nT . For

various other forms of the constitutive relations for Jα and Q see e.g. Landau &
Lifshitz (1959) and Garzo & Dufty (2002) and below; they are all trivially related to
each other.

4.1. Kinetic theoretical description

Let fα(v) denote the single-particle distribution function (the spatial and temporal
dependence of f are suppressed) of species α. Following the standard definitions
of kinetic theory, the number density for species α is given by nα =

∫
fα(v) dv, the

corresponding mass density being ρα =mαnα; the overall number density is n ≡ nA+nB ,
and the overall mass density is ρ ≡ ρA + ρB . The velocity field of species α is given
by V α = (1/nα)

∫
fα(v)v dv. Note that V α is not a hydrodynamic field, and needs
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to be expressed as a functional of the hydrodynamic fields. The mixture’s velocity
field is V = (1/ρ)(ρAVA + ρB VB). The granular temperature of species α is defined
by Tα = (1/nα)

∫
fα(v) mα(v − V )2 dv. Note that Tα is not a hydrodynamic field. The

velocity fluctuations of each species are measured with respect to the (hydrodynamic)
mixture’s velocity field, not the species’ velocity field. The mixture’s granular tempera-
ture is defined as T =(1/n)(nATA + nBTB). The kinetic expression for the stress tensor
is obtained by standard means, cf. e.g. Chapman & Cowling (1970), the result being

Pij = mA

∫
fA(v)uiuj dv + mB

∫
fB(v)uiuj dv, (4.8)

where u ≡ v − V is the peculiar (fluctuating) velocity of a particle (irrespective of
its species). Similarly, the heat flux is composed of two contributions, for obvious
reasons:

Q =

∫
fA(v)mAu2u dv +

∫
fB(v)mBu2u dv. (4.9)

Our definition of the heat flux may differ by a factor of 2 from some other definitions.
The sink term is given by Γ = ΓA + ΓB + ΓAB , where

Γα ≡ εαα

mαπσ 2
α

8

∫∫
fα(v1)fα(v2)|v12|3 dv1 dv2, (4.10)

and

ΓAB ≡ εAB

mABπσ 2
AB

2

∫∫
fA(v1)fB(v2)|v12|3 dv1 dv2. (4.11)

4.2. Outline of the Chapman–Enskog expansion

We solved (4.3) perturbatively by using a generalized Chapman–Enskog expansion,
following Sela & Goldhirsch (1998). The small parameters in this expansion are {εαβ},
and the Knudsen number, K . As mentioned, when K = εαβ = 0, the system comprises
a free elastically colliding mixture, for which the Boltzmann equation admits an
equilibrium solution. As is customary, the distribution functions of the mixture are
written as

fα = f (0)
α (1 + φα), where f (0)

α = nα

(
3mα

2πT

)3/2

exp

(
−3mαu

2

2T

)
are local equilibrium distribution functions, and the corrections φα are expanded as
follows: φα = φK

α +φε
α +φKε

α +φKK
α +φεε

α + . . . , where superscripts denote the order of
each term in the small parameters (a superscript ε denoting all terms that are of the
mentioned order in the three degrees of inelasticity). Following the Chapman–Enskog
method, it is assumed that fα is a functional of the hydrodynamic fields and that its
time dependence is implicit, i.e. it is determined by the time dependence of these fields
alone. Therefore, the time derivative of the distribution function can be expressed in
terms of the time derivatives of the hydrodynamic fields:

Dfα = (1 + φα)f
(0)
α

[
D ln nα +

3mαui

T
DVi +

(
3mαu

2

2T
− 3

2

)
D ln T

]
+ f (0)

α Dφα, (4.12)

where

Df ≡ ∂f

∂t
+ v · ∇f =

Df

Dt
+ u · ∇f.

Recall that u is the fluctuating velocity of the particle, v its actual velocity, V is the
velocity field and D/Dt ≡ ∂/∂t + V · ∇ is the material derivative (notice that D is not
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a material derivative). In parallel to the expansion of f , the result of application of
the operator D to any functional of the fields and the (fluctuating) velocities, can be
expanded in powers of the small parameters. Therefore one can define the operators
D0, DK , DKε , and so on, by the formal expansion DF = D0F +DKF +DKεF + ... (for
any function, F , of space, time and the phase space variables) where the superscripts
identify the orders in the small parameters (see also Sela & Goldhirsch 1998).
Next, upon expanding the Boltzmann equation (using the expansion of fα and the
Chapman–Enskog ansatz) in the small parameters and equating terms of the same
order on both sides of the equation, one obtains a set of equations corresponding to
each order in the perturbative expansion. For instance, the resulting equations at the
zeroth and linear orders in ε are given by (with β �= α)

D0fα = Bαα

(
f (0)

α , f (0)
α , 1

)
+ Bαβ

(
f (0)

α , f
(0)
β , 1

)
= 0,

Dεfα = Bαα

(
f (0)

α , f (0)
α φε

α, 1
)

+ Bαα

(
f (0)

α φε
α, f

(0)
α , 1

)
+ Bαβ

(
f (0)

α , f
(0)
β φε

β, 1
)

+ Bαβ

(
f (0)

α φε
α, f

(0)
β , 1

)
+ εαα

∂Bαα

(
f (0)

α , f (0)
α , eαα

)
∂εαα

∣∣∣∣
eαα=1

+ εαβ

∂Bαβ

(
f (0)

α , f
(0)
β , eαβ

)
∂εαβ

∣∣∣∣
eαβ=1

.

The action of the D operators on f (0) is found by using (4.12), and the expansion
of the action of D on the hydrodynamic fields in powers of the small parameters is
carried out using the continuum equations of motion presented above.

The form of the corrections φX
α , where X ∈ {εαβ, K, Kεαβ, KK, εαβεγ δ, . . .}, is

dictated by symmetry and tensorial considerations, though it also directly results
from the obtained equations. For instance:

φK
α = φK,T

α u · ∇ ln T + φK,nA

α u · ∇ ln nA + φK,nB

α u · ∇ ln nB + φK,V
α uiuj

∂Vi

∂xj

,

to linear order in the gradients, where for any tensor Aij ≡ 1
2
(Aij + Aji − 2

3
δijAkk),

and the prefactors are scalars in u; also φ
εαβ

α is itself a scalar in u. It is convenient to
define the following entities:

φ̃εαβ

α ≡ φεαβ

α , φ̃K,T
αi ≡ φK,T

α ui, φ̃
K,nA

αi ≡ φK,nA

α ui, φ̃
K,nB

αi ≡ φK,nB

α ui, φ̃K,V
α,i,j ≡ φK,V uiuj

and so on, as the ‘prefactors’ of the gradients of the fields (which have explicit
tensorial dependence). These entities, collectively denoted by φ̃X

α , satisfy the following
coupled equations (with α ∈ {A, B}, α �=β):

Lα

(
φ̃X

α (v1)
)

+ Lαβ

(
φ̃X

α (v1) + φ̃X
β (v2)

)
= RX

α

(
v2

1

)
HX

α (v1), (4.13)

where on the right-hand side RX
α

(
v2

1

)
is a scalar and HX

α (v1) is a tensor in v1

(determined by the equations of motion and the previous orders in the expansion),
and where for any function of the velocity, ψ , or function of two velocity arguments
χ , the linearized Boltzmann operators are defined by

Lα(ψ(v1)) ≡ σ 2
α

∫∫
v12 · k>0

f (0)
α (v1)f

(0)
α (v2)(v12 · k̂)

× (ψ(v′
1) + ψ(v′

2) − ψ(v1) − ψ(v2)) dv2 dk̂, (4.14)

Lαβ(χ(v1, v2)) ≡ σ 2
αβ

∫∫
v12 · k>0

f (0)
α (v1)f

(0)
β (v2)(v12 · k̂)

× (χ(v′
1, v

′
2) − χ(v1, v2)) dv2 dk̂. (4.15)
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It should be understood that the linearized Boltzmann operators are truly functionals
of the functions they act upon (they are written above as if they were mere functions;
e.g. strictly speaking L(ψ(v1)) should read L({ψ(v)}; v1), i.e. the action of L on ψ

evaluated at v1). Notice that the velocity transformations in the definition of Lαβ

correspond to elastic collisions between the α and β spheres, with v1 pertaining to α.
Since the linearized Boltzmann operator has vanishing eigenvalues, corresponding to
the collisional invariants, 1 or mα , mαv and mαv

2 (recall that the linearized Boltzmann
operator is the same as in the elastic case; see also Chapman & Cowling (1970)), the
general solution to these equations comprise a sum of particular solution and a linear
combination of the summational invariants: φα = Φα + a1,α + a2,α · (mαv) + a3,α mαv

2,
where Φα is a particular solution, and the ‘a’ prefactors are independent of v.
Uniqueness is assured by requiring that the solutions obey the following orthogonality
(which are also solubility) conditions to every order (X) in the perturbation expansion:∫

fAφX
A dv = 0,

∫
fBφX

B dv = 0,

∫
fAφX

A (mAv) dv +

∫
fBφX

B (mBv) dv= 0,∫
fAφX

A (mAv2) dv +

∫
fBφX

B (mBv2) dv=0.

These conditions ensure that the temperature, densities and hydrodynamic velocity
that appear in the zeroth-order (local equilibrium) solution are consistent with the
exact fields (as is standard in the Chapman–Enskog expansion), i.e. their values are
not corrected by the perturbations, φX

α . In practice, these conditions apply to the
scalar and vector corrections (in the peculiar velocity; the latter appear in scalar
products with the gradients of the fields) only, and are translated to conditions on
the (zeroth and first) coefficients that appear in the Sonine polynomial expansion
presented below. The conditions are automatically satisfied for higher-order tensors,
by symmetry. The next step is to expand the functions φ̃X

α in a (truncated) series of
Sonine polynomials:

φ̃X
α (u) =

∑
n=0

ψX,(n)
α Sn

m

(
3mαu

2

2T

)
HX

α (v1),

where ψX,(n)
α are the expansion coefficients. The index m depends on the tensorial

rank of HX
α (v1): it equals 1

2
for a scalar, 3

2
for a vector, 5

2
for a second-order tensor,

and so on. This expansion is possible because the linear Boltzmann operator is
isotropic, i.e. it preserves the tensorial nature and ranks of the tensors of the velocity
it acts upon (it also produces traceless tensors when acting on traceless tensors; in
this way different tensors of the same rank can be separated). Upon substituting
the Sonine polynomial expansion in (4.13), and projecting both sides on each of
the Sonine polynomials, one obtains a linear system of equations for the coefficients
ψX,(n)

α . Notice that the solutions depend on the order of truncation of the expansions.
Owing to the heavy algebra involved in the calculations, only the lowest non-zero
orders in the Sonine polynomial expansions have been considered in previous studies.
By exploiting the fact that the Sonine polynomials are derivatives of corresponding
generating functions, we were able to harness symbolic manipulators (such as Maple)
to carry out the Chapman–Enskog expansion to practically any desired order of
truncation. The solutions of the perturbative expansions, once obtained, serve to
calculate the constitutive relations, using the above expressions for the fluxes and sink
term. Notice that as the perturbative expansion is not affected by the gravitational
term in (4.3) (see Chapman & Cowling (1970)), g does not enter the constitutive
relations.
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4.3. Constitutive relations

The dependence of the transport coefficients on the parameters of the problem is
rather complex. Here we present an expression for the energy sink term and the
form of the other constitutive relations (which can be guessed on the basis of
tensorial considerations). The explicit dependence of the transport coefficients on the
parameters is presented in the Appendix.† The diffusion fluxes, to Navier–Stokes
order, are given by

Jα =
1√
6

nα

n

1

σ 2
AB

√
T

mα

(
κT

α ∇ ln T + κnA

α ∇ ln nA + κnB

α ∇ ln nB

)
, (4.16)

where κT
α , κnA

α and κnB
α are non-trivial functions of the set of dimensionless parameters

S ≡
{

{εαβ}, MA ≡ mA

mA + mB

,
σA

σA + σB

, c

}
,

where the concentration field, c, is defined as c ≡ nA/n= nA/(nA + nB). Explicit
expressions for these coefficients are provided in the Appendix. It is trivial and
convenient to rewrite (4.16) as follows:

Jα =
1√
6

nα

n

1

σ 2
AB

√
T

mα

(
κT

α ∇ ln T + κn
α∇ ln n + κc

α∇ ln c
)
, (4.17)

where one should recall that σAB ≡ (σA + σB)/2. The prefactors κT
α , κn

α and κc
α are

trivially related to κT
α , κnA

α and κnB
α . It is also trivial to transform either (4.16) or (4.17)

to the often used form, (4.6). The heat flux is given by:

Q =
5

√
6

18

1

σ 2
AB

T 3/2

√
m0

(λT ∇ ln T + λnA∇ ln nA + λnB ∇ ln nB), (4.18)

where m0 ≡ mA + mB . Explicit expressions for the coefficients λT , λnA and λnB are
presented in the Appendix. It is easy to transform (4.18) to the following form:

Q =
5

√
6

18

1

σ 2
AB

T 3/2

√
m0

(λT ∇ ln T + λn∇ ln n + λc∇ ln c) (4.19)

and relate λT , λn and λc to the prefactors that appear in (4.18). The sink term, to first
order in the degrees of inelasticity, is given by

Γ =
4

√
3π

9

(
εAA

n2
Aσ 2

A√
mA

+ εBB

n2
Bσ 2

B√
mB

+ εAB

√
2
nAnBσ 2

AB√
mAB

)
T 3/2 (4.20)

where mAB ≡ (mAmB)/(mA + mB). In the elastic limit the above constitutive relations
reduce to well-known results, cf. e.g. Chapman & Cowling (1970), minor differences
being due to the fact that we have carried out the expansion in the Sonine polynomials
to third order (the result, to second order, can be found in the Appendix), whereas in
previous studies only the first-order contribution was calculated. Similarly, our results
agree with those of Garzo & Dufty (2002) in the common domain of validity (small
εαβ).

† The appendix is available as a supplement to the online version of this paper or on request
from the authors.
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5. Applications
5.1. Inelasticity-driven segregation

This subsection is devoted to the description of a novel effect, namely the fact that
even when the species differ only by their respective coefficients of restitution, they
segregate when subject to a temperature gradient. Consider a non-convecting (V = 0)
steady state of a mixture for simplicity. Clearly, the diffusion flux vanishes in this
state.

In this case, the equation for the momentum density reduces to ∇p = − ρg, which
can be rewritten, using the equation of state, p = 1

3
nT , and ρ =(mAc +mB(1 − c))n, as

∇ ln n = −∇ ln T − 3

T
((mA − mB)c + mB)g. (5.1)

Upon substituting (5.1) in (4.17), and using the fact that in a non-convecting state
the diffusive fluxes vanish, i.e. JA =0, one obtains the following relation between the
temperature and concentration gradients:

∇ ln c =
κn

A − κT
A

κc
A

∇ ln T +
3

T

κn
A

κc
A

((mA − mB)c + mB))g. (5.2)

Define the rescaled length:

ξ =

∫ z

0

(mA + mB)g

T (z′)
dz′.

When the temperature and concentration gradients vary only in the z-direction
(defined by −g) one obtains from (5.2)

∂ ln c

∂ξ
= αAB

∂ ln T

∂ξ
+ βAB, (5.3)

where αAB ≡ (κn
A − κT

A )/κc
A, and βAB = 3(κn

A/κc
A)((MA − MB)c + MB) accounts for the

effects of gravity. In order to study the (pure) effect of inelasticity on segregation,
we consider the case mA = mB and σA = σB , corresponding to a system of particles
that differ by their coefficients of restitution only. Clearly, when all coefficients of
restitution are equal, the concentration, c, should be uniform. Figure 1(a) presents
plots of αAB as a function of c, for different values of the degrees of inelasticity. When
the coefficients of restitution are different from each other (see e.g. the solid line),
the system has non-vanishing concentration gradients. Segregation in the presence
of a temperature gradient can therefore occur as a consequence of inelasticity alone.
For example, when εAA > εAB > εBB (solid line), species A tends to concentrate in
the colder region. Interestingly, segregation occurs even in the unphysical limit when
εAA = εBB =0, but εAB is different from zero (and the concentrations are different), as
shown in figure 1(a). This is because the species in excess experiences more inelastic
collisions than the other species. Figure 1(b) presents results of an MD simulation
of a vertically vibrated granular mixture, which demonstrates segregation when the
degrees of inelasticity are different from each other but the masses and radii are
uniform.

5.2. Open vibrated binary mixture under gravity: direct and reverse buoyancy

Consider a roofless vertically vibrated binary mixture under gravity, where energy is
supplied at the floor of the system. In the simple case when there is no convection
and the system is infinite and homogeneous in horizontal planes, the equations of
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Figure 1. (a) Plots of the thermal coefficient, αAB , see (5.3), as a function of the concentration,
c ≡ nA/n, for different values of the degrees of inelasticity, as detailed in the inset. Here mA = mB

and σA = σB . Note that αAB �= 0 when the coefficients of restitution are different. As expected
αAB = 0 when the coefficients of restitution are all equal, since then the system is monodisperse.
(b) MD results for the concentration, c, as a function of height in a vertically vibrated system
under gravity. The coefficients of normal restitution are: eAB =0.83667, eAA = 0.94864 and
eBB = 0.70711. The system consists of 15625 particles of unit mass and uniform radii equal to
0.0115176, of which 7812 belong to species A. They reside in a container whose floor is a unit
square and whose height (which the grains never reach) is 3. The boundary conditions are
periodic in the lateral directions. The gravitational acceleration is set to unity. The amplitude
and period of vibration of the floor are 0.0075 and 0.075 respectively. The initial condition is
a homogeneous mixture of the two species (c =0.5) evenly distributed in a unit cube above
the floor.

motion reduce to:

JA = 0,
dp

dz
= −ρg, and − ∂Qz

∂z
= Γ.

Define a dimensionless sink term, Γ̂ by

Γ =
n2σ 2

AB√
m0

T 3/2Γ̂ .

Using the z-component of (5.1) and (5.2), (4.19), and the equation of motion for the
temperature field, one obtains

5
√

6

18

1

σ 2
AB

√
m0

∂

∂z

[√
T

(
F7

6(MAc + MB(1 − c))

dT

dz
+ F8m0g

)]
= −n2σ 2

AB√
m0

T 3/2Γ̂ (5.4)

where we recall that m0 ≡ mA + mB , and

F7 ≡ 6(λT − λn + λcαAB) (MAc + MB(1 − c)), (5.5)

F8 ≡ 3

(
λc κ

n
A

κc
A

− λn

)
(MAc + MB(1 − c)), (5.6)

where MB = 1 − MA (recall that MA ≡ mA/(mA + mB)). Upon measuring height in
terms of the rescaled local pressure p̂ =(σ 2

AB/m0g)p, and defining η ≡ − p̂∂ ln
√

T /∂p̂,
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Figure 2. The functions {Fi} versus the concentration, c, for a mass ratio of 3, equal
diameters, and ε =0.1 for all collisions; see the text for definitions.

(5.2) and (5.4) reduce to the following two first-order coupled ODEs

∂η

∂p̂
= F1

η2

p̂
− F2

η

p̂
+

F3

p̂
− F4p̂,

∂c

∂p̂
= −F5

η

p̂
− F6

p̂
, (5.7)

where

F5 ≡ 2

(
κn

A − κT
A

κc
A

)
c, F6 ≡ κn

A

κc
A

c, F1 ≡ 1 +
F ′

7F5

F7

, F2 ≡ −F ′
7F6

F7

− F ′
8F5

F7

− F8

F7

,

F3 ≡ F ′
8F6

F7

and F4 ≡ −9
√

6

5

Γ̂

F7((MA − MB)c + MB)
, and F ′

i ≡ ∂Fi

∂c
.

All {Fi} are functions of the set of dimensionless parameters, S. The dependence of
the functions, {Fi(S)}, on the concentration, c, is depicted in figure 2 for the case
εαβ = 0.1, MA = 0.25 and σA/σB = 1.

We have verified that the functions, {Fi(S}, satisfy (see also figure 2) the following
properties (as a function of the concentration, c, when all other parameters are kept
fixed): (i) All {Fi} are bounded; (ii) F4 > 0, F5 � 0 and F6 � 0; (iii) F3 = F5 = F6 = 0
at c = 0 and c = 1; (iv) F1 = 1 at c =0 and c = 1; (v) F ′

5(c = 0) > 0, F ′
6(c = 0) > 0,

F ′
5(c = 1) < 0, F ′

6(c = 1) < 0, and (vi) F1(F6/F5)
2 + F2(F6/F5) + F3 �= 0, except at c =0

or c = 1. An analysis of (5.7) which employs the above properties of {Fi}, reveals that
the concentration tends to unity at p̂ = 0 (corresponding to ‘infinite’ height above the
floor; this is the effect of buoyancy) as well as for p̂ → ∞ (corresponding to an infinite
mass above the floor), and has a single minimum at a finite value of p̂. Also, the heat
flux at infinite height (p̂ = 0) automatically vanishes, as it is supposed to (Brey et al.
2001). As (5.7) are first-order coupled ODEs their solution depends on the values
of c and η at a given value of p̂ (alternatively, on the average value of c and the
heat flux at the floor). The solution also depends on the parameters that enter (5.7),
i.e. the mass ratio, the diameter ratio and the coefficients of restitution, but not on
the total number of particles. The latter is determined by the choice of the maximal
value of p̂ (the minimal being zero, corresponding to infinite height), i.e. the same
graph (for 0 � p̂ � ∞) corresponds to any number of particles in the system, each
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Figure 3. Particle scatter plot, based on an MD simulation of a vertically vibrated system
under gravity, comprising 32000 particles of unit mass (open circles) and 32000 particles of
mass 3 (solid circles). For all collisions ε = 0.1 and all particle radii equal 0.0071985. The base
of the computational box is a unit square and its ceiling (which the particles never reach) is
of height 3. The boundary conditions are periodic in the lateral directions. The gravitational
acceleration is normalized to unity. The amplitude and period of vibration of the floor are
0.012 and 0.15 respectively. The initial condition is a homogeneous mixture of the two species
in a unit cube above the floor. The shown length units are in terms of particle diameters.
Segregation into three layers is evident. Only part of the system is shown.

such value corresponding to a chosen end of the range of values of p̂ (the pressure
at the floor is determined by the total number of particles of each species). In this
sense the above result is universal. When the value of p̂ corresponding to the minimal
value of c is within the above range of p̂, the (light particle) concentration is maximal
at both the floor and the top of the system. In any case c = 1 at ‘infinite’ height (for
p̂ = 0) as expected by the effect of buoyancy. Therefore these equations predict both
a quantitative and qualitative degree of universality, the latter being the ‘sandwich’
arrangement of the light particles. The above conclusions need to be modified for
convective flows, and the experimentally important effects of the sidewalls need to be
accounted for as well.

A particle scatter plot which demonstrates the above segregation effect in a vertically
vibrated system is presented in figure 3. A quantitative comparison of the theoretical
and MD results is presented in figure 4; good agreement is obtained, the difference
being probably due to finite density effects which we have not accounted for.
Figure 5 presents a favourable comparison of theory with the experimental results
of Wildman & Parker (2002). While not quantitatively verified, our results are in
qualitative agreement with other simulations of vibrated systems (Krouskop & Talbot
2003) and experiments (Wildman, Huntley & Parker 2001; Wildman & Huntley 2003;
Huan et al. 2004). A similar picture of segregation (in which the particles also differ
in size) was obtained in another experiment (Jiang et al. 2003), where the effect is
referred to as ‘sandwich-like segregation’.
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Figure 4. (a) The concentration, c, versus the dimensionless pressure, p̂, for a vertically
vibrated system comprising 15625 particles; the mass ratio is 3, the diameter ratio is unity,
and all εαβ =0.1. The other parameters are as in figure 1. Smooth lines represent theory and
discrete points are results of corresponding MD simulations. (b) The volume fraction, ν, versus
the dimensionless pressure for the same parameters.
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Figure 5. (a) The concentration, c, versus height in units of the average diameter
corresponding to the experiments of Wildman & Parker. Smooth lines represent theory and
discrete points correspond to experimental results. The number of A (light) particles is 810
and the number of B (heavy) particles is 175. The radii are rA = 2 mm, rB = 2.5 mm, the
particle masses are mA = 0.092 g and mB = 0.187 g, and eAA = eAB = eBB = 0.91. The frequency
of oscillations is 50Hz and the amplitude is 1.4mm (note that the data reported in Wildman &
Parker 2002 pertains to an amplitude of 1.74 mm). The slight discrepancy between theory and
experiment can be attributed to the effects of the sidewalls, air, finite density effects near the
floor, Knudsen effects and possible low statistics at large heights (where hydrodynamics does
not apply) or near the floor of the system. (b) The volume fraction, ν, versus rescaled height.
The other details are the same as for (a).

6. Conclusion
The fact that hydrodynamic equations can quantitatively describe fine details of

the dynamics of granular gases and granular gas mixtures is rather impressive, given
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the lack of scale separation in these gases. The kinetic theory of bidisperse systems
is far more complicated than that of monodisperse systems. However, the effort one
needs to invest in the study of bidisperse systems is undoubtedly worthwhile, not
only because most real granular systems are polydisperse, but because they exhibit a
host of interesting phenomena beyond those of the equivalent polydisperse molecular
systems. Some of these phenomena, including some novel effects, have been described
above, and good agreement with results of simulations and experiments has been
demonstrated. A further step is to map out the phase diagram of vibrated granular
mixtures. To this end it would help to develop a theory for moderately dense granular
mixtures. The shear viscosity in this case is known (Garzo & Montanero 2003). In
comparing to experiments one should keep in mind that the effects of air on the grains
may be important (cf. e.g. Mobius et al. 2005). Although the theory does not signal
a ‘breakdown’ when the ratio of the radii of the constituents is very large, this case
needs further study since it corresponds better to a suspension (of the large particles)
than a mixture. A derivation of boundary conditions for monodisperse granular gases
can be found in Goldhirsch (1999), see also references therein. Boundary conditions
for bidisperse systems are yet to be developed. Finally, since, as mentioned, most
granular materials are polydisperse, the above theory needs to be further generalized
to account for polydispersity, and frightening (to a theoretician) as the prospect may
be, for frictional interactions and non-spherical grains.
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Foundation (ISF), grant no. 1999-417 from US-Israel Binational Science Foundation
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